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Full-Wave CAD of a Rectangular Waveguide Filter with
Integrated Coaxial Excitation

Giampiero Gerini and Marco Guglielmi

Abstract—Coaxial waveguides are very commonly used in many mi-
crowave subsystems for the connection of various components. Significant
size reduction could, therefore, be achieved by integrating the design of the
coaxial transition in the computer-aided design (CAD) of microwave filters.
In this context, we first discuss in this paper a coaxial transition, which can
be efficiently designed interactively using an accurate and efficient CAD
procedure. The key elements of the CAD tool developed are then described
and a specific example of a microwave filter is discussed. In addition to
theory, measured results are also presented, thereby fully validating both
the CAD tool and the structures proposed.

Index Terms—Coaxial waveguides, electromagnetic launching, wave-
guide excitation, waveguide filters.

I. INTRODUCTION

Microwave passive components are usually designed first with stan-
dard waveguide ports, and are then fitted with waveguide-to-coaxial
transitions. By integrating the coaxial transition directly in the hard-
ware design, significant savings in size and mass would be achieved.
A large number of theoretical contributions can indeed be found in the
technical literature for the study of rectangular-waveguide-to-coaxial-
waveguide transitions (see, e.g., [1]–[13]). Few of the available results,
however, can be used for filter design since they are all essentially con-
cerned with the determination of the input impedance at the coaxial
port. More complete and accurate results, which could, in principle, be
of use for filter design are also available [14]. The approach in [14],
however, requires very complex frequency-dependent calculations so
that its usefulness is, in fact, limited. In this paper, we first discuss a
coaxial-to-rectangular-waveguide transition, which is amenable to an
accurate and efficient full-wave computer-aided design (CAD) proce-
dure. We then describe the key elements required for the implemen-
tation of a CAD tool for the full-wave analysis and optimization of a
complete filter structure. In addition to theory, measured results are also
presented, thereby fully validating at the same time both the structure
of the transition and the CAD tool developed.

II. COAXIAL -TO-RECTANGULAR-WAVEGUIDE TRANSITION

The most commonly used coaxial-to-rectangular-waveguide tran-
sition uses a probe acting as an exciting dipole. Although this type
of transition is very simple to manufacture, its full-wave electromag-
netic analysis requires rather complex frequency-dependent calcula-
tions [14]. The situation can be dramatically improved if the geometry
of the transition is suitably modified. Another possible geometry is the
one shown in Fig. 1 [15]. This type of transition can be decomposed
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Fig. 1. Collinear coaxial transition in rectangular waveguide.

into the cascaded connection of uniform waveguides so that the elec-
tromagnetic analysis is considerably simplified.

The analysis approach proposed in [15] is based on the assumption
of a given sinusoidal current distribution along the central conductor.
The procedure is, therefore, not rigorous and, furthermore, the results
obtained are not suitable for integration in a full-wave CAD tool. To
obtain a rigorous full-wave result, the structure can indeed be viewed
as the cascaded connection of different uniform waveguide sections.
However, instead of assuming a given current distribution on the central
coaxial conductor, each transition must be analyzed with a full-wave
procedure (e.g., [16]). Following this approach, the study of the struc-
ture in Fig. 1 is reduced to finding the modes of each uniform wave-
guide section, and to evaluating the coupling integrals for the modes at
the various junctions. The first and last waveguide sections are standard
coaxial and rectangular waveguides, respectively. For the remaining
two waveguide types, namely, rectangular coaxial and ridge waveguide,
some additional work is required.

A. Modal Analysis

A very efficient procedure for computing large numbers of eigen-
values and eigenfunctions of arbitrary waveguide structures is the one
given in [18]. According to [18], the modes of a rectangular waveguide
modified or perturbed by an arbitrarily shaped cylindrical conductor,
for instance, can be obtained by solving threefrequency-independent
integral equations. This procedure can be used to derive the modes of
the two noncanonical waveguides in the proposed structure, namely,
the rectangular coaxial and ridged waveguide in Fig. 1. In this section,
we briefly recall the key equations of the general theory [18] that will
be used in the following sections. These equations will be specialized
for the case of the rectangular coaxial waveguide of Fig. 1. To begin,
we first write the expression for the electric field at a generic pointr in
the waveguide in the form

E(r) = �j�k
�

Ge(r; s
0

; k) � J� l
0

dl
0 (1)

whereGe is the dyadic Green’s function of the rectangular waveguide
andJ� is the current density on the contour� of the inner conductor.
The next step in the modal analysis is to split the current density into
transversal and longitudinal components, thereby obtaining

J� l
0 = Jt l

0

t l
0 + Jz l

0

z0 (2)
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Fig. 2. Piecewise parabolic expansion functions.

wheret is the unit vector tangential to�. As outlined in [18], by using
(2) in (1) and then imposing the boundary conditionsEt � t = 0 and
Ez = 0, respectively, on�, we can obtain two integral equations for
TE and TM modes. To solve these equations, the unknownsJt andJz
are now represented in the form

Jt(l
0) =

N

n=1

bnwn l0 (3)

Jz l0 =

N

n=1

b0

nwn l0 (4)

where the expansion functionswi are defined as

wi=

2

3�2
(���i)

2; �i����i+�

�
4

3�2
(���i�3�=2)

2+1; �i+�����i+2�

2

3�2
(���i�3�)

2; �i+2�����i+3�

(5)

where� is the angular coordinate, as defined in Fig. 1,� is the angular
interval into which we have divided the inner circumference, and�i is
the lower limit of theith interval, as shown in Fig. 2. We must note
that, with respect to general case outlined in [18] where two different
sets of expanding functions were chosen for the TE and TM cases,
we use the same set for both cases. In fact, in the particular case of
the rectangular coaxial waveguide,� has no edge points and none of
its points lie on the boundary. As a consequence, the density current
components do not present any singularity and their smooth behaviors
can be well approximated by the same set of expanding functions (5).
Furthermore, these functions can be defined on a circular domain and
no poligonal approximation of the inner conductor is then required.

The last step of the modal analysis is the evaluation of the funda-
mental TEM mode. In this case, the field is determined as gradient of
a scalar potential�(r) given by the following equation:

�(r) =
�

g(r; s0)�� l0 dl0 (6)

where�� represents the charge density on�, andg(r; r0) is the same
scalar Green’s function for the Poisson’s equation subject to the con-
dition g = 0 at the boundary of the unperturbed waveguide. The un-
known charge density can again be expanded with the same set of basis
functions used for the TM problem.

Applying the Galerkin’s procedure to the integral equations, we ob-
tain the final eigenvalue matrix systems for the evaluation of the modal

propagation constants. Spurious solutions for both TE and TM modes
are generated and must be eliminated. This is easily accomplished by
noting that they either correspond to the complementary problem or to
modes with zero eigenvalue [18], [19]. The orthonormality condition
for TE and TM modes can be assured by imposing proper conditions on
the eigenvectors of the corresponding eigenvalue problems, as demon-
strated in [19] and [20], respectively. The normalization condition for
the TEM mode is obtained by imposing

b
00T

� L
0

� b
00 = 1: (7)

Here,L0 is defined as in [18]. Since this has not been reported in the
literature, we present the proof in the Appendix.

B. Coupling with Rectangular Waveguide

Once the modal structures of the noncanonical waveguides have
been obtained, we can now proceed with the evaluation of the coupling
integrals. In particular, for the step between the ridged rectangular
waveguide and the empty rectangular waveguide, we can use the
efficient procedure described in [21]. This technique, in fact, allows
a very efficient evaluation of the coupling coefficients between the
modes of a rectangular waveguide and those of the arbitrarily shaped
waveguide with the same rectangular contour. The applicability of
this approach will be extended in this section to the computation of
coupling integrals between two arbitrary waveguides originating from
the same basic rectangular cross section, as in the case of the ridge
waveguide and rectangular coaxial waveguide in Fig. 1. Following the
notation used in [21], the equations of the electric field in an arbitrary
waveguide can be rewritten as follows:

EEE
TE

q (r) =

1

i=1

e
TM

i (r)Aq
i+

1

i=1

e
TE

i (r)Bq
i +

M

m=1

e
TE

m (r)Cq
m

(8)

EEE
TM
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1

i=1

e
TM

i (r)Dq
i +

M

m=1

e
TM

m (r)Eq
m (9)

EEE
TEM

q (r) =

1

i=1

e
TM

i (r)F q
i (10)

whereeTEi andeTMi are the modes of the unperturbed waveguide (rect-
angular waveguide) andEEETEMq , EEETEq , andEEETMq are the modes of the
arbitrary waveguide (coaxial rectangular waveguide). Using this nota-
tion, we can also rewrite the expressions for the coupling integrals with
the modes of the unperturbed waveguide in the form

I
TE;TE
p; q =




e
TE

p (r) � EEETEq (r)dS = Bq
p + Cq

p (11)

I
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p : (16)
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Fig. 3. Optimized coaxial transition in rectangular waveguide.

The coupling integrals between two arbitrary waveguides [(1) and (2)]
can now be evaluated. For example for the TE–TE case, we have
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Equation (17) can now be rewritten using (11) and (13), thereby ob-
taining
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p (r) � EEETE(2)q (r)dS =
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(18)

Following the same procedure, we can easily derive similar expressions
for all the other cases. The upper limitM for the series running over the
indeximust be high enough to ensure proper convergence. In practice,
however, the truncation value can be chosen to be larger or equal to the
truncation value used in the computation of the admittance parameters
in [16].

C. Experimental Verification of the Transition

Once all of the requiredfrequency-independentcalculations have
been carried out, the study of the complete transition entails the so-
lution in frequency of the banded linear system, which results from the
admittance matrix representation of the cascaded waveguide sections
[16]. It is important to note that this system inversion is theonly fre-
quency-dependent calculation that is required and that it can be carried
out very efficiently, thus leading to very fast CAD tools [22]. To verify
both the CAD tool described and the transition concept, we have opti-
mized a transition from a subminiature A (SMA) connector to a WR62
waveguide. The structure obtained is shown in Fig. 3, while the mea-
sured and simulated response is shown in Fig. 4. As can be seen, very
good agreement is achieved.

III. A PPLICATION TO MICROWAVE FILTERS

As an example of application, we will now discuss the microwave
filter in rectangular waveguide shown in Fig. 5. The structure has been
optimized interactively using a CAD tool based on the theory described

Fig. 4. Measured and simulated results for the structure in Fig. 3.

Fig. 5. Microwave filter in rectangular waveguide with integrated coaxial
transition.

Fig. 6. Measured and simulated results for the structure in Fig. 5.

in this paper, and following the filter design procedure given in [23].
One aspect of the design procedure that deserves more attention is the
proper dimensioning of the input coupling. Going back to the result
shown in Fig. 4, we notice that the coaxial-to-rectangular transition
exhibits asingly tunedresonant response. This type of response is not
appropriate for filter design because it can interfere with the resonant
behavior of the first cavity. This obstacle can be easily removed by
decreasing the size of the rectangular waveguide at the location of the
transition and adjusting the coupling to the full-size resonator with a
small length of waveguide below cutoff.

The structure shown in Fig. 5 has then been manufactured using
a combination of milling and spark erosion by APCO Technologies,
Vevey, Switzerland. The simulated and measured in-band results
are shown in Fig. 6. As we can see, very good agreement has been
achieved. Note, however, that in order to obtain this result, tuning
screws have been used (in the cavities only) in order to compensate
for manufacturing errors. The total length of the filter with integrated
transitions turns out to be essentially equal to one of the filters with
standard waveguide ports, but excluding the required coaxial-to-wave-
guide transitions. A substantial saving in size and mass has, therefore,
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Fig. 7. Comparison of wide-band performances (dotted line indicates standard
inductive filter).

been achieved. Another feature of the transition proposed that is
worth mentioning is the far out-of-band response (Fig. 7). Comparing
the response of the filter in Fig. 5 with the one of an inductive filter
with standard coaxial-to-waveguide transitions, we can observe
an increased spurious free range of about 1 GHz. This improved
performance is due to the narrow-band nature of the integrated coaxial
transition.

IV. CONCLUSIONS

In this paper, we have discussed a simple geometry for coaxial-to-
rectangular-waveguide transitions, which can lead to a very efficient
CAD for microwave filters with integrated coaxial excitation. The filter
structure investigated is composed of cascaded sections of uniform
waveguide so that a rigorous CAD can be carried out very efficiently.
Furthermore, the integration of the transition in the filter design re-
sults in an improved out-of-band response and in significant saving in
size and mass with respect to standard inductive filters in rectangular
waveguide. The key elements of the CAD tool developed have been
discussed, and measured results have also been presented. Very good
agreement between measured and simulated results has been achieved,
thus validating at the same time both the filter structure and the theory
developed.

APPENDIX

NORMALIZATION CONDITION FORARBITRARY TEM MODES

The normalization condition for the TEM mode is

S

r�(x; y) � r�(x; y) dS = 1 (19)

whereS is the cross section of the rectangular coaxial waveguide of
Fig. 1. Using the following vector identity:

r � ( A) = A � r +  r �A (20)

(19) becomes

S

r � �(x; y)r�(x; y) dx dy

�

S

�(x; y)r2
�(x; y) dx dy = 1: (21)

Applying the divergence theorem in two dimensions to the first term of
(21), we can transform it into the following contour integral:




(�r�) � n̂ d` (22)

where
S = 
0 + 
1 is the contour of the rectangular coaxial wave-
guide,
0 is the outer rectangular contour, and
1 is the inner circular
conductor. Furthermore, the second term of (21) is identically zero be-
cause the potential of the TEM mode satisfies the following equation:

r
2
� = 0; onS: (23)

Equation (21) can now be rewritten as follows:




(�r�) � n̂ d` =



(�r�) � n0 d`+



(�r�) � n1 d` = 1: (24)

Imposing, for the solution of (23), the following boundary conditions:

� =0; on
0 (25)

� =1; on
1 (26)

we can obtain from (24)

�




D � n1 d` =



Dn d` = 1 (27)

where we used the identity�r� = D. Finally, considering the
boundary conditionDn = � on 
1, (27) becomes




� d` =

N

n=1

b
00

n




wn(`)d` = 1 (28)

which can be rewritten in the following matrix form:

b
00T

� L
0

� b
00 = 1 (29)

whereL0 is defined as in [18]. This is the normalization condition (7)
that must be imposed onb00 in order to guarantee the normalization of
the TEM mode.
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Single-Ended HEMT Multiplier Design Using
Reflector Networks

Donald G. Thomas, Jr. and G. R. Branner

Abstract—Microwave and RF frequency multipliers are employed in
a large number of communications, radar, civilian, and military systems.
This paper presents the development of active doublers operating in and

frequency bands. These devices are unique in that high electron-mo-
bility transistors (Fujitsu FHX35LG) are employed in an unbalanced con-
figuration utilizing ”reflector” networks simultaneously on the input and
output to reflect the second harmonic signal into the gate of the device and
the fundamental signal into the drain simultaneously at appropriate phase
angles to optimize performance. Measured and simulated results are pre-
sented on over 20 multiplier designs to verify the design philosophy. Con-
version gains of approximately 7 dB are presented for narrow-band designs
(5% bandwidth), 5 dB for medium-bandwidth designs (15%), and 4 dB for
wide-bandwidth designs (35%). The fundamental and third harmonic re-
jection is approximately 40 dBc for the narrow-band designs and greater
than 50 dBc for the medium and wide-band designs.

I. INTRODUCTION

Numerous techniques exist for realization of frequency multipliers
using passive or active devices. While high electron-mobility transis-
tors (HEMTs) are traditionally employed in high-gain or low-noise am-
plifiers, less information is available on their use in multiplier applica-
tions. This is in marked contrast with multiplier realizations employing
bipolar and FET devices.

The basic configuration of Fig. 1 is employed in the frequency multi-
plier realization of this paper. The input network is designed to pass the
fundamental frequency component to the gate of the HEMT (common-
source configuration), while suppressing higher harmonic components.
Likewise, the output network suppresses the fundamental and other un-
desired harmonics, while passing the desired harmonic. The frequency
multiplier reflector network design philosophy implemented in this
paper is applied to frequency doublers utilizing a fundamental fre-
quency of 3 GHz as a vehicle.

As mentioned previously, a primary objective of the output and input
networks is to suppress the fundamental and second harmonics, respec-
tively. In the process of suppressing the undesired signals, it appears
that not a great amount of attention has been focused on the concept of
reflecting signals back into the device from the input and output net-
works, although it has been utilized occasionally as pointed out below.
The device nonlinearities cause harmonics and the fundamental to mix
with other frequency components and either enhance or degrade the
signal at the desired output harmonic. Therefore, it is important for the
reflected signal to be phased properly to interfere constructively with
the desired harmonic. Thus, in concert with their primary filtering and
matching functions, the input and output networks of Fig. 1 can be de-
signed in such a way that they are reflector networks meeting the above
criteria.

Due to the complexity of calculating the actual effects of the re-
flector networks, the published literature to date on this topic is sparse
[1]–[4]. Using reflector networks as a design tool for frequency dou-
blers, Hirota [1] gave simulated data on the effects of a reflector net-
work on the output of a GaAsFET versus conversion gain, and realized
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